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A one-dimensional lattice gas (Ising model) of length L and with nearest- 
neighbor coupling J is considered in a canonical ensemble with fixed number of 
particles N = L / 2 .  Exact expressions and asymptotic forms for large L are 
derived for the density~lensity correlation function, using periodic boundary 
conditions, and for the density (magnetization) profile, using antisymmetric 
boundary conditions. The density~tensity correlation function, g, assumes for 
temperatures T> T', with T' = 2J(k s In L) -1, and for L large, the form 

g(x) = ggC(x) + BL -I  + a(x) L -1 + O(L -2) 

where x is a distance between considered lattice sites, B is known from earlier 
work of Lebowitz and Percus, (lb) and a(x) decays exponentially for x--, or. For 
T~< T', the correlation function and the density profile behave differently, the 
latter exhibiting a step in the middle of the interface. 

KEY WORDS: One-dimensional lattice gas; canonical ensemble; density 
profile; correlation function. 

1. I N T R O D U C T I O N  A N D  RESULTS 

In  finite systems the correlat ion functions,  calculated in the canonical  and 

grand canonical  ensembles, differ from each other, especially for large 

distances. (1) Similar differences may  be present for correlat ion funct ions 
and  density profiles in n o n u n i f o r m  systems, for example, in an interface 
between coexisting phases. Dudowicz  and Stecki (2) have observed that 
these differences in the finite two-dimens ional  lattice gas are very large. Up  
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till now exact results in the canonical ensemble are not known, even for a 
one-dimensional lattice gas. 

It is hoped that these results may be related to the problem of a local 
structure of an interface. A sharp interface of microscopic extent results in a 
straightforward manner in meanfleld theories, (3) whereas in a two-dimen- 
sional lattice gas (in the grand canonical ensemble) one finds a vanishing 
density profile for vanishing macroscopic external field, even if boundary 
conditions favor the phase separation. (4) 

In this paper exact expressions for the correlation function and the 
density profile in the canonical ensemble are derived for a one-dimensional 
lattice gas of length L and their asymptotic forms for L ~  oc are 
established. Two types of boundary conditions are considered: cyclic boun- 
dary conditions and the boundary conditions given by 

t~o= 1, J~L_I_ 1 -~" 0 ( 1 )  

where 1i x = 0, 1 is the microscopic variable associated with the site x, and 
~x = 0 corresponds to an empty cell, whereas r~ x = 1 to an occupied one. L 
is an even integer. 

In the first case we derive the correlation function, whereas in the 
second one we compute the density (magnetization) profile. The 
asymptotic form of the density-density correlation function, g, in a closed 
system is known to be (1) 

g(x) ~- 1 -nZkBTN -1 (2) 
N ~ o o  
x ~  oo  

k B is Boltzmann's constant, n is the average number density, and Z the 
compressibility. This form is appropriate for a uniform fluid with no long- 
range correlations, as is explained in Ref. lb. 

For  n = 1/2 we have found the exact expression for the correlation 
function g(x) for any x, and its asymptotic form for L ~ oo. We have then 
compared our result with the form (2) as well as with the function ggC(x) 
found in the open system (grand canonical ensemble). In the second, non- 
uniform case, we were interested in the density profile in a large system, 
especially at low temperatures, because for T =  0 K the density profiles in 
the closed and open systems differ qualitatively from each other, and 
because 

lim lim ( ~ )  ~ • lim lim (~x )  gc 
L ~ c o  T ~ 0  L--* ao T ~ 0  

The above is due to the degeneracy (with respect to the number of par- 
ticles) of the ground state in the grand canonical ensemble. 
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We have derived the expressions for the density profile and the 
asymptotic form of (~L/2}n for L- - ,oe  for different values of the tem- 
perature, as well as for T ~ 0 .  The density profiles were calculated 
numerically for L = 60 and they were then compared with the density 
profiles in the grand canonical ensemble. 

In Section 2, the exact results are derived for finite L, whereas Sec- 
tion 3 contains the asymptotic analysis for L --, oe. 

2. EXACT E X P R E S S I O N S  FOR FINITE L 

The lattice gas and the Ising models are equivalent, but it is more con- 
venient for our purposes to use the language of the latter. The variables in 
the lattice gas and the Ising model are related to each other as follows: 

a x + l  
hx = - -  (3a) 

2 

where ~r x = _+ 1 is a spin variable associated with the site x. Thus, we have 

(o 'x)  + 1 
( ~ >  = ~ (3b) 

</~1/~1 + x >  g(x) = = h(x) + 1 (4a) 

The total correlation function h is equal because of (3a) to the spin-spin 
distribution function: 

h ( x ) =  (a la l+x)  (4b) 

We fix the number of particles to be N =  L/2. This implies in the 
corresponding Ising model the following restriction on configurations: 

L 

Z  i=0 (5) 
i = 1  

As was mentioned in the previous section, two systems will be con- 
sidered. The first one will be denoted by c (cyclic) whereas the second one 
by n (nonuniform). The probability distributions are defined by 

(L) ]} C: pc((CYi))~-'Zcl~ i~l(Ti exp K i 1 ~iCYi+l (6a) 

n: pn((ai))=Z216 ai exp K ~l-r + ~ ~ritri+ 1 (6b) 
i 1 i = 1  
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where 

K =  flJ, fl = l / k s  T 

and 6(a) denotes the Kronecker symbol. 
The following expressions define the quantities of interest: 

<~i~l+x)c "~- S (71(TI+xPc((Ti)) 

<G~>, = y~ ~xp.((a,)) 
(~) 

By symmetry with respect to the changes 

c: x ~ L - x  

n: x-- .  L - x - 1  

it follows that 

n :  ( o ' x ) , ,  = - -  < a C _ x _  1 ) , ,  

Thus we shall restrict ourselves to the case x <~ L/2. 
Applying the identity 

1 f ~  dk e ika 6(a) = ~-~ 

and using standard transfer matrix notations, we have 

Zc=~-~jo dk Tr T L 

(~ al + x),, = 2rtZ,. 
f f l , ~ i  - - x  

Ciach 

and 

(7) 

(Sa) 

(8b) 

(9a) 

(9b) 

(%) 

(9d) 

(lOa) 

f f lal+xT~(al ,al+x ) C-x T~ (al+x,  al)  

(10b) 

12 Zn=~-~ dk S r..~ tv l ,  •L) e(--K+ig/2)~L 
Cr l,Cr L 

'2  <a~>.=2zcZ" dk X e~:+~k/~)~'T~-l(~r,,a~) 
~l,ffx,O'L 

L x e(--K+ ik/2),:rL 

(lOc) 

(lOd) 
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where the transfer matrix Tk is defined by 

Tk(0.1, 0"2) = exp[Ka 10" 2 + ik/2 (0"1 + 0"2)] 

The eigenvalues of Tk are of the form 

21,2 = eXfl,2(k) 

where 

and b is given by 

f l , 2 ( k )  = COS k + (cos 2 k - b) 1/2 

(11) 

(12a) 

(12b) 

b = 1 - e -4K (13) 

After elementary algebraic transformations we get 

(a la1+x)"=l  I~ ~dkG(k)dk R(k) (14a) 

(ax)  =bXS~'~dkWL+l 2.(k) 
I~ ~ dk Z(k) 

(14b) 

G(k)=4e 4XWx(k ) WL_x(k) (15a) 

R(k) = RL(k) (15b) 

Z(k) = cos kRL_ l(k) + (cos 2 k - b/2) W E_ l(k) (15c) 

and 

where 

and 

Rx(k) = f~(k) + f ; ( k )  (15d) 

f~(k) - f ~ ( k )  W~(k) = (15e) 
f~(k) - f2 (k )  

3. A S Y M P T O T I C  A N A L Y S I S  F O R  L - *  oo 

The integrals in (14) have been calculated numerically for L = 60 and 
the results are shown in Figs. 1-3. The density profiles, as calculated in the 
canonical and the grand canonical ensembles are seen to differ from each 
other, especially at low temperatures. The density profile in the canonical 
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Fig. 1. The density profiles in a system of length L = 60 as calculated in the canonical ensem- 

ble: (a) K =  1,10; (b) K = 1,47; (c) K = 2.20 (K = J/k B T). 

ensemble for K = 2- 2 looks like the density profile in a system consisting of 
two different phases separated by an interface of microscopic extent. 

In order to study the quantities of interest for large L, we study the 
asymptotic behavior for L -+ ~ of the integrals in (14). If we are interested 
in a rough qualitative description of the density profile, we may confine 
ourselves to x=L/2 (see Fig. lc). Eq. (14b) then simplfies to 

(~ru2).= 2nbU214 f:/2dk Z(k)]-~ (14c) 

where the fact that ( au2)~  ~>0 follows from the choice of boundary con- 
ditions and site labeling. 
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Fig. 2. The density profiles in a system of length L = 60 as calculated in the grand canonical 
ensemble: (a) K =  1.10; (b) K =  1.47; (c) K =  2.20 ( K  = J /k  8 T). 

z ( l c )  = 

G(k) = 

The explicit forms of the integrands Z, G, R in (14) are 

cos 2 k - b/2 cos 2 k - b/2 
fL (k )  c o s k +  ~_ r f 2  (k) cos k - 

x / c o s  2 k - b , / c o s  ~ k - b 

for k <<. k 1 

{ c ~  2b(L- 1)/2 COS k c o s [ ( L  - 1 )qo] -t ~/cos2 k -  b 

for k>~kl 
e --4K 

cos 2 k - b { f~(k)  + fL (k )  -- b ~ [ f ~ -  2~(k) + f ~  2~(k)] } 

for k ~ k 1 
2e - 4Kb L/2 

b -- cos2 k 
{cos[(L-2x)q~]--cos(Lq~) } for k>~k~ 

(16a) 

(16b) 

822/40/3-4-15 
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Fig. 3. The correlation function g in a system of length L = 60 for K= 0.88: (a) the canonical 
ensemble; (b) the grand canonical ensemble. 

and  

R(k)=~f~(k)+f~(k ) for k<~k~ 
[ 2b L/2 cos(L~p) for k ~> kl  

(16c) 

where 

x / b  - cos 2 k tgq~ = (17) 
cos k 

cos 2 k l  = b (18) 

and fl,2 are defined in (12b). 
We  split  the integrals  into 

f:/2dk F(k)= f]ldk F(k)+ f~/2dk F(k) (19) 

where F = Z, R or  G. The in tegrands  we consider  have their  g loba l  m a x i m a  
at  k = 0. F o r  0 < k < k ,  they all decrease monoton ica l ly ,  because their  first 
derivat ives are negative.  Let  us consider  the ra t ios  of the values of the 
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functions Z, R and G for k = kl to the values of those functions for k = 0. 
We get 

G(k3 
G(O) 

R(k~) 
R(0) 

_ _  = thL/2Ke 4 K  L 2 - ( L -  2X) 2 
( t  - -  e-4K)(1 + thLK - thXK - th I-- xK) 

(20a) 

2 
= thL/2K 1 + thL~ (20b) 

and 

Z(k l )  2 ( L +  1) e -2x 
Z(O) = thL/2K (1 + e-2X)(t -- th L+ 1K) (20c) 

We introduce the new parameter ~ > 0, defined by 

e 2 K  = L ~ (21) 

The asymptotic behaviors of the ratios (20) are the same. Denoting these 
by r/, we have 

~O(L -M) Marbi t rary ,  for 3 < 1  (22) 

"= (o(1), for ~>1  

We denote the temperature corresponding to 6 = 1 by T' and get 

T' = 2J(k~ In L) - 1 (23) 

3A. Case T >  T' 

Let us consider the case T >  T' (3 < 1). Because the absolute values of 
G, R, and Z do not increase for k > kl,  we get from (22) that r~/2 dk F(k) is Jkl 
negligible, where F =  G, R, or Z. We again split the remaining integrals 
into two terms: 

f f ' d k  F (k )=  f~~ F(k) + fk~ldk F(k) (24) 

where k o is such that satisfies k o,~ e 2K. Expanding about k = 0 we get for 
the ratios F(ko)/F(O ) the estimates 

F(ko) 
= [1--e2Kk~+O(k~e2X)]L[1 +O(k~e4K)] (25) 

F(O) 
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where F = G, R, or Z. The integrands decrease an d  from the above, we see 
kl  that the integrals ~kodkF(k) are negligible for ko=L -~, where ~ <  

(1 + 6)/2. Thus the main contribution to the integrals under consideration 
comes from the interval (0, ko). For  the latter, the Laplace method can be 
applied, the integrands being of the form 

where 

and 

F(k) I ~  w(k) e -Lhr (26) 

w(k) = 

h(k) = In f~(k) (27) 

cosk+(cos2k-b/2)(cos2k-b)  -1/2, F = Z  

1 F=R 
(28) 

c o ~ 5 ~ - b  1 \ f l J .J 

The functions w(k) are nonsingular for k < k o. The asymptotic series found 
by the Laplace method is of the form (5) 

f~ dk F(k) ~ 2 dvt-1/2-v (29) 
- - ~  L - ~ : ~  v = O  

DENSITY (MAGNETIZATION)  AT x =  L/2 

For the density (magnetization) profile, the expansion (29) is trun- 
cated at the first term, whereas for the correlation function we keep in (29) 
the first two terms. As mentioned before, the integrands have their global 
maxima at k = 0. The first two coefficients dv are ~5) 

do -- h2 w(0) (30a) 

and 

ell = h~w"(o)/4 + 15/8 h~w(O)/4! h"(o) (30b) 

where h2 = [27~/h"(0)] !/2 and the derivatives of odd order of h and w vanish 
at k = 0 .  

In the case F =  Z we get 

d~ z(k) ~ dk Z(k) 
~  L oo 

r =  (2~/L)l/2eK(l+e 2~)c+~/4+0(L-3/2) (31) 
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Hence the magnetization at x = L/2 is as follows [see (14c)] 

-K(2~L)l/2 
(trL/2)n = thL/2K e 1 + e - 2 K  (32) 

The exact expression for the magnetization at x = L/2 calculated in the 
grand canonical ensemble with the same boundary condition is found, by a 
straightforward calculation, to be 

2thL/2K . e-2K 
(~c/z)g~ = (1 + e--ZK)(1 -- th L+ IK) (33) 

Comparing results (32) and (33), we see that (~L/2)n tends to zero for 
L ~  o% but more slowly than (~L/2) g~ 

CORRELATION FUNCTION 

Let us consider now the correlation function. Keeping in (29) the first 
two terms we get 

( a l a 1 + ~ ) c = l - I ~ o o + ( G  1 G ~  J (34) 

where Go, G1 and Ro, R~ denote the first two coefficients do and d~ in the 
expansion (29) for the integrands G and R, respectively. The explicit forms 
of Go, G1, Ro, R1 are found by straightforward calculations. Substituting 
them into (34) and making use of the fact that the system c is symmetric 
with respect to the change x--, L -  x, we obtain the final form of h(x): 

h(x) = thXK + thL- XK - -  
e 2K 

L 

thXK(x + e 2K) + th L-  XK(L - x + e 2K) 
+ (35) 

L 

The first two terms of the right-hand side of (35) represent the 
correlation function h(x) in the grand canonical ensemble. (6) The third 
term is exactly equal to the correction term in (2), because in the one- 
dimensional lattice gas for n = 1/2 we have 

1-- thLK fl 1 2K 
n z = ~ e z K l + t h L K  i ~ o , - ~ e  fl (36) 

The last term in (35) is a correction which is also of order O(L ~) as its 
preceding term, but unlike the latter, it depends on x. 
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3B. Case T~< T' 

Let us consider the case T<<.T' (6~>1). Because of (22) the two 
integrals in (19) are now significant and must be taken into account. We 
shall confine ourselves, in the case of (14a), to x =  L/2. Thus (15a) sim- 
plifies to 

e 4K 
G(k) - [fL/2(k ) _ fL/2(k ) ] 2 (37) 

cos 2 k - b 

Taking into account (22), we approximate the first integral in (19) by 

f~ -a dk F(k )=F(O)L  ~ (38) 

where F =  Z, G or R. We obtain the following estimates 

]-a dk Z(k) = L 1 - 6  + O ( L 2 ( 1 - 6 ) )  

fo c-a dk G(k) = L 2-3e + o(L 2-36) 

(39a) 

(39b) 

and 

Io z-a dk R(k) = [2 + L 2(1 e) + o(L2O el)] L e (39c) 

In the interval (L -e, 7z/2) we introduce the new integration variable q) 
defined in (17) and get 

[,=/2 =/'2 s in [ (L  + 1 )qo] 
d k Z ( k ) = b r b  [ dqo 

|JL a ~0 COS @ ( t  26 _.~ tgZ(p)l/2 

dk G(k) = bL L-ze  &o 
~o cos ~o sin ~o(L 2a + tg2cp)u2 

(40a) 

(40b) 

and 

[~/2 r r~/2 
dk R(k) = bLb Jo do tgqo cos(L(o) 

(L -2e + tg2q~) ~/2 aL-6 
(40c) 

where bL = 2b (L- ~)/2. 
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MAGNETIZATION AT x = L/2 

The following inequalities hold 

ff/2 [" x/2 [ re~2 
bLb & o s i n E ~ o ( L + l ) ] < . J L _  d k Z ( k ) < ~ b L b  &o 

o o 

from which we get the estimates 
re/2 

sin[q~(L + 1)] 

sin (p 
(41) 

(42) 

From the above and from (39a), (21), and (14c), it follows that in the 
canonical ensemble (closed system) the magnetization at the point nearest 
to the center is of the form 

(crL/2)n _~ l _ 2  L~- 6+o(L  , 6) (43)  
L ~ o e  7r 

whereas in the corresponding open system we get from (33) 

(aL/2)  g~ = L - I - O ( L  t -6 )  
L ~ oo 

(44) 

CORRELATION FUNCTION 

The integrals (40b) and (40c) are found for L ~ oo to be of the form 

fo ~/2 d~o ]~((p) ~_ 
L ~ o c ,  

- 2L  - 6 + L t 26 ['~/2L dx 
~0 

sin x + O(L  2 - 3'5) 
X 

(45a) 

and 

f./2 [./,2L dx sin x O(L 2- 36 &o(~(~o) ~ 2L 1-2'5 - + 
a 0  L ~ co ~0 X 

(45b) 

Combining the above and (39) and substituting the resulting integrals into 
(14a) gives the final expression: 

= 1 + O(L 2-3'5) 
( a l a l  +L/2)c c -  o~ (46) 

In the open system (grand canonical ensemble) the correlation 
function is (6) 

thXK + th L -  x K 
~- 1 - O ( L  2 3,5) (47)  

h(x)=  l + t h L + l K  c - ~  
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4. S U M M A R Y  

F r o m  the results obta ined above  it follows that  in a closed system 
(canonical  ensemble)  of length L there are two tempera ture  regions: above  
and below T ' =  2 J k ~  In L ~ which m a y  be regarded as a critical tem- 
perature.  In the first region the correlat ion function, g, is of the form (35) 
which, using (36), reads 

g ( x )  = g g C ( x ) -  n z k ~ T N  1 

t h X K ( x  + e 2K ) + th L - X K ( L  - x + e 2K) 
+ (48) 

L 

Fo r  x ~ ~ this is exactly the same expression as predicted in Ref. 1o 
The qualitative behavior  of the density profile is also similar to that  in 

the open system (grand canonical  ensemble).  This is in agreement  with 
expectation. 

Below T', where T' ~ 0 as L ~ o0, the considered functions behave dif- 
ferently. The  expression (48) for g is not  valid. In the system n appears  a 
localized interface of microscopic  extent. Thus  in one-dimensional  lattice 
gas the canonical  constraint  and ant i symmetr ic  bounda ry  condit ions are 
sufficient to separate  the phases below a critical tempera ture ,  appropr ia te  
to the system of extension of L. In addi t ion the width of the interface does 
not  depend on L. 
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